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This work reports an efficient and compact FPGA processor for the SHA-256 algorithm. The
novel processor architecture is based on a custom datapath that exploits the reusing of mod-
ules, having as main component a 4-input Arithmetic-Logic Unit not previously reported.
This ALU is designed as a result of studying the type of operations in the SHA algorithm, their
execution sequence and the associated dataflow. The processor hardware architecture was
modeled in VHDL and implemented in FPGAs. The results obtained from the implementation
in a Virtex5 device demonstrate that the proposed design uses fewer resources achieving
higher performance and efficiency, outperforming previous approaches in the literature
focused on compact designs, saving around 60% FPGA slices with an increased throughput
(Mbps) and efficiency (Mbps/Slice). The proposed SHA processor is well suited for
applications like Wi-Fi, TMP (Trusted Mobile Platform), and MTM (Mobile Trusted Module),
where the data transfer speed is around 50 Mbps.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Traditionally, cryptographic algorithms have been considered slow, demanding high computational resources and ineffi-
ciently implemented in conventional general purpose processors [1,2]. That fact has motivated the design and implementa-
tion of dedicated computing architectures that allow to accelerate the processing time and increase the performance
expressed as mega bits per second (Mbps). These custom architectures in general can be classified according to two design-
ing approaches: processor and co-processor. In the former approach, the aim is to provide the minimum hardware that can
be used to execute a finite set of machine instructions that, according to a program executes the cryptographic algorithm. On
the contrary, in the later approach the aim is to exploit the parallelism in data and execute most of the involved operations in
the algorithm directly in hardware. So, while the processor approach is more oriented to use less amount of area resources,
the co-processor approach is more oriented to perform the algorithmic operations faster.

Nowadays, with the explosion in the use of mobile devices, such as cellular phones, PDAs, smartphones, and tablets, new
applications have emerged but also, several risks and threats to the security of such systems have arisen. In this context, the
mobile applications demand security building blocks implemented inside the application itself, which is known as
o-Uribe),
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embedded security [3,4]. Due to the fact that mobile devices are computationally constrained if compared against desktop
computers or workstations, it is necessary that the implementation of the security services in the mobile applications com-
promise amount of area resources, performance, power consumption, and clock frequency.

This work describes a hardware architecture based on the processor approach, previously mentioned, to execute the SHA-
256 algorithm [5], which is a state of the art algorithm to compute a hash or digest for a piece of binary information, allowing
to offer the security services of integrity and authentication by implementing digital signature schemes or message authen-
tication code algorithms (MAC) [6]. Despite currently new hash algorithms are being evaluated to select the next standard
SHA-3 for hashing [7,8], the SHA-2 family, and particularly the SHA-256 algorithm, provides enough security level to be con-
sidered in the next years mainly for security on constrained devices. The main target application of the proposed processor is
for the mobile applications Wi-Fi, TMP (Trusted Mobile Platform), and MTM (Mobile Trusted Module), where the required
performance is up to 50 Mbps.

The methodology used in this work is focused in the analysis of each operation involved in the SHA-256 algorithm and its
associated data dependency, that allows to design a customized datapath that favors data reusing, minimizes memory ac-
cess, and increases the amount of processed data per clock cycle. From this analysis, a reduced number of basic operations
was determined, and the corresponding datapath and arithmetic and logic units were designed. An iterative design method-
ology was applied, allowing to refine the designs at each iteration in order to decrease the critical path and reduce hardware
resources. The main contributions of this work are:

1. A novel architectural design of a processor for the SHA-256 algorithm, having as a core module in its datapath a 4-
input arithmetic and logic unit not previously reported.

2. A novel compact SHA-256 processor, occupying the least amount of area resources reported for FPGA implementa-
tions, consuming only 139 slices in Virtex5 FPGA and saving around 60% slices compared to related works.

3. A novel compact SHA-256 processor with the best efficiency compared to previous approaches in the literature of
compact designs, reaching 0.84 Mbps/Slice.

In the literature, FPGA-based implementations [9–14] have focused in executing the SHA-256 algorithm as fast as possi-
ble, computing a SHA-round during a clock cycle and using techniques such as pipelining, unrolling, operation reordering,
retiming and unfolding [15]. On the contrary, the approach in this work is to design a compact implementation suitable
for mobile applications. Although in the literature exist reported compact FPGA design for the SHA algorithm [16–20], the
novel processor architecture we propose based on a 4-input custom ALU allows to obtain designs using still fewer FPGA re-
sources while achieving both higher performance and efficiency. Our design is 64% and 66% more compact than the designs
presented in [16,14] respectively.

The rest of this document is organized as follows. Section 2 overviews the SHA-256 algorithm, Section 3 describes the
hardware architecture of the proposed processor. Section 4 discusses the results and comparisons against related works. Fi-
nally, Section 5 points out the conclusion of this work.
2. SHA-256 algorithm

The SHA-2 family was published in 2002 by the National Institute of Standards and Technology (NIST) [5]. This family
is a more robust version than its predecessors SHA-0 and SHA-1. SHA-256 is an algorithm specified in the SHA-2 family,
sharing similar functionality with other versions with higher security such as SHA-384 and SHA-512 (see Table 1). It
computes the digest of an arbitrary length message in the following way. The input message m is padded with one
‘1’ and leading ‘0’s until the message length (in bits) becomes a multiple of 512. The last 64 bits in the padded message
are used to store the length of the original message as a 64-bit number. After the padding, the resulting message is di-
vided into blocks of length 512-bits Dð1Þ;Dð2Þ; . . . ;DðNÞ. Each block of data DðiÞ is processed sequentially by a main function
during 64 rounds. A partial 256-bit hash value Hi is obtained as the current DðiÞ data block is totally processed. After
computing the last data block DðNÞ, the final hash HN is computed and delivered. Algorithm 1 lists the general function-
ing of SHA-256 algorithm.
Table 1
Characteristics of SHA-2 family algorithms.

Algorithm SHA-1 SHA-256 SHA-384 SHA-512

Message size < 264 < 264 < 2128 < 2128

Block size 512 512 1024 1024
Word size 32 32 64 64
Message digest size 160 256 384 512
Security 80 128 192 256
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Algorithm 1. SHA-256 main loop

Require: DðiÞ a 512-bit block

Ensure: The HASH value Hi corresponding to DðiÞ from Hði�1Þ
1: for t from 0 to 63 do
2: Prepare Wt

3: Compute
P

0ðaÞ
4: Compute Majða; b; cÞ
5: Compute T2

6: Compute
P

1ðeÞ
7: Compute Chðe; f ; gÞ
8: Compute T1

9: h g
10: g  f
11: f  e
12: e dþ T1

13: d c
14: c  b
15: b a
16: a T1 þ T2

17: end for
18: Htemp ¼ ajbjcjdjejf jgjh
19: HðiÞ  Hði�1Þ þ Htemp

20: return HðiÞ

All the functions involved in the SHA-256 algorithms are computed according to the Eqs. (1)–(4).
Chðx; y; zÞ ¼ ðx ^ yÞ � ð:x ^ zÞ ð1Þ

Majðx; y; zÞ ¼ ðx ^ yÞ � ðx ^ zÞ � ðy ^ zÞ ð2Þ
X

0

ðxÞ ¼ ROTR2ðxÞ � ROTR13ðxÞ � ROTR22ðxÞ ð3Þ

X
1

ðxÞ ¼ ROTR6ðxÞ � ROTR11ðxÞ � ROTR25ðxÞ ð4Þ
The main loop processing the DðiÞ data block uses eight 32-bit working variables a; b; c; d; e; f ;h and g, forming a buffer
state, that after the 64 rounds becomes the partial hash value Htemp. This hash value together with the hash computed for
the previous data block is added to get the hash value corresponding to the message until the data block DðiÞ. When the first
data block is processed, an initial hash value H0 is used. At the beginning of the computation of Hðiþ1Þ, the value of Hi needs to
be loaded into the buffer state.

At each iteration t in the hash algorithm a constant Kt is required, which is well defined in the SHA-256 specification. The
temporal variables used in Algorithm 1 named T0 and T1 are computed as specified in Eqs. (5) and (6) respectively.
T1 ¼ hþ
X256

1

ðeÞ þ Chðe; f ; gÞ þ K256
t þWt ð5Þ

T2 ¼
X256

0

ðaÞ þMajða; b; cÞ ð6Þ
The 32-bit value called Wt , that is used at each iteration in Algorithm 1, is computed as follows. The first 16 values for Wt

during the first 16 iterations are taken directly from the 512-bit message. For the remaining iterations, the values for Wt are
computed using functions r0 and r1 (see Eqs. (7)–(9)).
Wt ¼ MðiÞ
t 0 6 t 6 15

r1ðWt�2Þ �Wt�7 � r0ðWt�15Þ �Wt�16 16 6 t 6 63

(
ð7Þ

r0ðxÞ ¼ ROTR7ðxÞ � ROTR18ðxÞ � SHR3ðxÞ ð8Þ



R. García et al. / Computers and Electrical Engineering 40 (2014) 194–202 197
r1ðxÞ ¼ ROTR17ðxÞ � ROTR19ðxÞ � SHR10ðxÞ ð9Þ
3. Proposed architecture

The key idea in the hardware organization of the proposed processor for the SHA-256 algorithm was to reuse data, min-
imize critical paths and reduce the memory access by using cache memory. Initially, the SHA-256 processor was designed
containing a simplified 2-input ALU with the main objective to reduce area consumption. The expectation was that a small
ALU considering only two operands would lead to a compact design of the SHA processor. However, during the design pro-
cess and based on a study on the type of operations in the SHA algorithm, their execution sequence and the associated data-
flow, we realize that a more compact design could be achieved by designing a 4-input ALU, reducing clock cycles and
memory resources for intermediate results. A 4-input ALU is well suited for implementation in FPGAs, mapping the logic
to the 4-in LUTs (Look up tables) included in them.

The proposed architecture for the SHA-256 processor consists of the following main modules: a control unit, a datapath, a
bank of 32-bit registers, and two ROM memory blocks. The architectural hardware design is based on an analysis of the
operations involved in the algorithm itself. Such analysis allowed to identify the kind and sequence of operations to design
a specialized 4-input ALU, as well as internal cache memory to speed up the data access and reduce read/write cycles to the
register bank. The block diagram of the SHA processor is shown in Fig. 1.

Lets consider again the main operations computed in the internal rounds of the SHA-256 algorithm. The equations for
computing Wt ; T1; T2; a, and e can be conveniently rewritten, leading to a new set of equations of the form
f ¼ wþ xþ yþ z, without altering the functioning of the SHA algorithm. The main goal in this new representation is to define
basic instructions that can be efficiently computed in a specialized 4-input ALU. The rewritten equations are (10)–(14).
Tx ¼
X

1

ðeÞ þ Chðe; f ; gÞ þWt þ 0 ð10Þ

Ty ¼ hþ Kt þ dþ Tx ð11Þ

Tz ¼
X

0

ðaÞ þMajða; b; cÞ þ ðTy � 0Þ þ 0 ð12Þ

e ¼ Ty ð13Þ

a ¼ Tz ð14Þ
The datapath for the proposed SHA-256 processor is shown in Fig. 2. A customized ALU named HASH_ALU computes Eqs.
(10)–(14). Additionally, a smaller arithmetic unit named AU performs sums of two operands and transfers the intermediate
hash value Hi to the buffer state (the working variables a–h). The AU module is composed of an adder and a multiplexer that
allows to select the result between the incoming data (a transfer) or the adder result. The R module is a forwarding unit that
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Fig. 1. Block diagram of the SHA-256 processor.
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198 R. García et al. / Computers and Electrical Engineering 40 (2014) 194–202
allows to feedback data obtained one previous iteration to the HASH_ALU. This functionality reduces the number of memory
access and avoids the unnecessary memory addressing and all the related logic. Another responsibility for this module is to
compute the operation Ty � d. So, the R module is composed of a 32-bit register, a subtracter, and a multiplexer. The values
that can be propagated by the R unit are: the incoming operand D (see Fig. 2) and the subtraction between the incoming data
R1 and the internal register R2. The R2 register stores the incoming operand C from the previous iteration. The block diagrams
of the HASH_ALU, AU and R modules are depicted in Fig. 3.

During the execution of an internal round of the SHA-256 algorithm in the interval 0 6 t < 16, the datapath contains the
values shown in Table 2. When 16 6 t < 64, the data flow in the datapath is as shown in Table 3.

The control unit generates the four addresses for the operands incoming to the HASH_ALU unit as well as the address for
the destination register, where the result obtained from the ALU is stored. In addition, the control unit orchestrates the data
source to the ALU. During the first 16 cycles the data is taken from the exterior, that is, the first 16 32-bit words are taken
from the 512 data block DðiÞ to be hashed. Once the 512-bit data block is loaded, the control unit transfers the content of the
intermediate hash Hi to the buffer state (registers a–h). For the first block, such intermediate hash value is the initial hash
value H0, which is taken from a memory that stores constants. For the next rounds and data blocks, Hi is computed from the
registers a to h and the previous Hði�1Þ.

The control unit is a finite state machine composed of 9 states:

S0 – The initial state waits for new message to be hashed.
S1 – Loads the 16 words of the input message, one at each clock cycle.
S2 – Loads the initial hash H0 or update the intermediate hash value Hi.
S3 – Computes Wt , being Wt ¼ Mt for the first 16 rounds. After that, Wt is computed using the HASH_ALU (see Fig. 3).
S4 – Computes Tx the result is not stored in memory.
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Table 2
Operations to compute the first 16 rounds in the SHA-256 algorithm.

Step Operation R1 R2

1
P

1ðeÞ þ Chðe; f ; gÞ þMt þ 0 ‘‘xxxxxxxx’’ ‘‘xxxxxxxx’’
2 hþ kt þ dþ Tx Tx g
3

P
0ðaÞ + Majða; b; cÞ þ ðTy � dÞ þ 0 Ty d

Table 3
Operations to compute the last 48 rounds in the SHA-256 algorithm.

Step Operation R1 R2

1 r1ðWt�2Þ þWt�7 + r0ðWt�15Þ þWt�16 ‘‘xxxxxxxx’’ ‘‘xxxxxxxx’’
2

P
1ðeÞ þ Chðe; f ; gÞ þWt þ 0 Wt Wt�15

3 hþ kt þ dþ Tx Tx g
4

P
0ðaÞ + Majða; b; cÞ þ ðTy � dÞ þ 0 Ty d

R. García et al. / Computers and Electrical Engineering 40 (2014) 194–202 199
S5 – Computes Ty. First computes dþ T1 (see equation in Section 2) and stores the result in the address for d, not for e as
the algorithm indicates. This is done because the algorithm indicates that each variable will contain the value from the
variable that precedes it. The control unit rotate the addresses of the variables in order to avoid unnecessary assignments
and save time.
S6 – Computes Tz and stores the result in the variable h. Again, the same reasoning applied in the state S5 is used to avoid
unnecessary assignments and save time.
S7 – Computes the intermediate hash value Hi.
S8 – All data blocks are processed. The final value in HN is taken and placed in the dataout bus.

4. Results

The proposed SHA-256 compact processor was described using VHDL. The Xilinx ISE 13.2 tools were used for implement-
ing the VHDL design in a Xilinx Virtex-5 FPGA. ISE tools allow to calculate the utilized hardware resources and to determine
the maximum clock frequency, useful parameters for measuring the Throughput (see Eq. (15)) and Efficiency of Performance
(see Eq. (16)).
Throughput ¼ Data block size
Clock time� Clock cycles

ð15Þ

Efficiency ¼ Throughput
Number of slices

ð16Þ
The FPGA implementation results are shown in Table 4. The SHA-256 processor processes a 512-bit data block with a la-
tency of 280 clock cycles:

� 16 Cycles are used to load the 512-bit data block.
� 8 Cycles are used to transfer the intermediate hash value Hi to the working variables a–h.
� The internal loop (64 rounds) are computed in two sequences:

– During the first 16 rounds Wt is taken from the incoming 512-bit data block and only 3 cycles are used.
– For the next 48 rounds, Wt is computed using the HASH_ALU, requiring 4 cycles per round.
� After the internal loop, the intermediate hash value is computed. This process takes 8 cycles.
� Finally, it takes 8 cycles to output the final hash value.
Table 4
Implementation results.

FPGA xc5vlx50t-3ff1136

Frequency (MHz) 64.45
Slices 139
LUTs 527
Latency 280
Throughput (Mbps) 117.85
Efficiency (Mbps/Slice) 0.84
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The VHDL design was debugged analyzing the data flow and checking the state of every variable at each round of the algo-
rithm against values taken from a software implementation. Also, the implemented processor was validated applying test-
beds for computing hash values of different files and comparing the results against the ones obtained from the software
counterpart.

Our proposed architecture compromises performance and area usage, reusing the hardware as much as possible to keep a
high efficiency. The hardware architecture proposed in this work is based on the design principles for computer architecture
[21]: (i) Simplicity favors regularity, (ii) smaller and simpler is faster, (iii) make the common case fast, (iv) good design de-
mands good compromises.

From the architectural point of view, our proposal is quite different from previous approaches to construct compact SHA
processors. The hardware architecture presented in [17] (which is almost the same presented in [19]) uses a 2-input ALU
containing only one adder. This module is re-used, taking the input data from two 5-1 multiplexers. Their design uses three
RAM memories where variables and constants are stored. Also, other combinatorial independent modules are required to
compute the required operations in the SHA algorithm. On the contrary, our design uses only one memory and a single
ALU computing all the required operations in the SHA algorithm. The hardware architectures presented in [16,18] also con-
tain independent specialized modules (generator, compressor and controller separately). In that design, there is not memory
for storing the buffer state containing the current hash value. Instead, a set of registers are used. The module for computing
the hash value uses only one adder, which is re-used by multiplexing its inputs with 2-1 and 7-1 multiplexers. The generator
module uses two adders, one memory and one register.

The architecture presented in [19] also re-uses only one adder and keeps independent modules for computing the oper-
ations in the SHA algorithm. That design requires three memories for storing data being processed at each round, buffer state
and constants. The adder takes its arguments from two sources selected by 5-1 multiplexers. In [20], the reported architec-
ture is more complex, keeping the data at each round stored in registers, and the figure of an integrated ALU is not present.

Although it is hard to compare different FPGA implementations due to the different technologies used, we attempt to pro-
vide a comparison as fair as possible in Table 5 among representative FPGA implementations of SHA algorithm under the
same conditions.

In Table 5, comparison against non-campact architectures [9,11,10,22,12–14] is just a reference to show the saving in area
resources that can be achieved. However, since [9,10] are implemented in CMOS technology it is hard to compare those
implementation results against our FPGA results. Also, [11] is implemented in a different FPGA family so area usage (GE
vs. Slice) cannot be directly compared. The results presented in [22] are from a Intel general purpose processor (software
implementation) so comparisons are also not possible. The amount of area reported in [13] is quite big, our design being
more compact requires 60% less FPGA resources compared to that work. Compared to [14], our approach requires 66% less
area resources, although this saving comes with a penalty in the performance. However, considering both metrics, area and
performance, our design is 2.18 more efficient.

Regarding the compact designs [17,16,18–20] previously reported, our design uses fewer area resources with a better
compromise area/performance. Compared to all those works our design requires less clock cycles and the operational fre-
quency is lower, which can lead to reduced power consumption, a well desired characteristic in compact implementations.
The results presented in [17,19] are from ASIC implementations. In practice, an ASIC implementation is faster than an FPGA
implementation. However, compared to [17,19] our design achieves a performance three times better operating at a lower
frequency. The SHA processor presented in [18] and implemented in a Virtex-II XC2V2000 requires 779 slices, 490 clock cy-
cles with a clock frequency of 71.5 MHz achieving 74.7 Mbps. In contrast, we require 45% less area resources, 42% less clock
cycles, with a lower clock frequency of 35.5 MHz. In terms of efficiency, our design is better obtaining 0.150 Mbps/Slice
Table 5
Comparison results.

Work Platform Campact? Hardware resources Clock freq. (MHz) Clock cycles Performance (Mbps)

[9] CMOS 0.13 mm No 22025 Gates 793.6 68 5975
[10] CMOS 0.13 mm No 22025 Gates 793.6 68 5975
[11] Stratix EP1S10F484C5 No 104760 GEs 74 65 595
[12] Virtex XCV200 No 1306 Slices 77 66 308
[13] Virtex XCV200 No 1060 Slices 1 BRAM 83 – 326
[14] Virtex XCV300 No 1261 Slices 88 73 87
[22] Intel core No – – – 18.62 – 15.31 Cycles/byte
[16] Virtex2 XC2VP20 Yes 1210 Slices 85 355 122.6
[17] CMOS 0.35 mm Yes 10868 GEs 50 1128 22.5
[18] Virtex-II XC2V2000 Yes 779 Slices 71.5 490 74.7
[19] CMOS 0.35 mm Yes 10868 GEs 50 1128 22.5

[20] Virtex-II Yes 639 Slices 85 1120 –
Virtex-4 615 Slices 102 1120 –

This work Virtex XC2VP Yes 431 Slices 35.50 280 64.91
VIrtex-4 LX 422 Slices 50.06 280 91.53
Virtex-5 VLX 139 Slices 64.45 280 117.8
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compared to 0.096 Mbps/Slice obtained by [18]. Similarly, our design uses 64% less area resources than [16] although with
the cost of a decrease in the performance but with better efficiency (0.1 vs. 0.15). Compared to [20], we use over 30% less area
resources under the same FPGA technology. In terms of performance, we achieve almost double of the throughput reported
in [20]. The basic idea in [20] is the design of an unrolled architecture, reusing hardware and restricting operations to only
8 bits. However, that hardware reusing approach increases the area usage and latency, which affects the overall
performance.

The performance achieved by the SHA processor described in this work, which is higher than the one obtained by an ASIC
implementation [17,19], is enough for mobile applications such as Wi-Fi, TMP (Trusted Mobile Platform), MTM (Mobile
Trusted Module), where the maximum throughput is about 50 Mbps.

5. Conclusion

This work presented and discussed the hardware design of a customized processor for executing the SHA-256 algorithm.
The main module is a 4-input ALU and a customized datapath that reuses data, avoids unnecessary access to memory and its
FPGA implementation leads to short critical paths and reduced amount of area, around 60% compared to related works. The
VHDL description of the processor is well mapped to the 4-in LUTs contained in common FPGAs, making an efficient use of
the available area. The resulting design uses fewer area resources than other approaches while keeping a performance suit-
able for mobile applications like Wi-Fi or IEEE 802.11 networks, where the performance is around 50 Mbps. Our first ap-
proach was to design a simple datapath consisting in a small 2-input ALU. However, we needed to rewrite the original
equations in the SHA-256 algorithm to derive the customized 4-input ALU and its associated datapath to get a more compact
SHA-256 processor. Our design can be easily extended to other hash algorithms of the SHA-2 family since all of them exhibit
a similar functionality.
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